電子元器件基本常識:半導體致冷技術(shù)
理論簡(jiǎn)介
半導體致冷亦稱(chēng)電子致冷也叫溫差致冷,是由半導體所組成的一種冷卻裝置,於1960年左右才出現,然而其理論基礎帕爾帖效應可追溯到19世紀。如圖:
這是由X及Y兩種不同的金屬導線(xiàn)所組成的封閉線(xiàn)路,通上電源之後,冷端的熱量被移到熱端,導致冷端溫度降低,熱端溫度升高,這就是著(zhù)名的帕爾帖效應。它是建立在帕爾帖效應的原理基礎上,這個(gè)古老的溫差電現象早在19世紀初期帕爾帖就發(fā)現鉍—銻組成的熱電偶,帕爾帖效應很顯著(zhù)。塞貝克也收集了少量的半導體材料,都因溫差電動(dòng)勢,數值小,無(wú)實(shí)用價(jià)值。因此,帕爾帖效應發(fā)現后的一百多年里,這個(gè)效應一直無(wú)法到應用。
直到本世紀五十年代,蘇聯(lián)科學(xué)院半導體研究所約飛院士對半導體進(jìn)行了大量研究,于一九五四年前發(fā)表了研究成果,表明碲化鉍化合物固溶體有良好的致冷效果。這是最早的也是最重要的熱電半導體材料,至今還是溫差致冷中半導體材料的一種主要成份。約飛的理論得到實(shí)踐應用后,有眾多的學(xué)者進(jìn)行研究到六十年代半導體致冷材料的優(yōu)值系數,達到相當水平,才得到大規模的應用,也就是我們現在的半導體致冷器件。
我國半導體致冷技術(shù)始于50年代末、60年代初。當時(shí)在國際上也是比較早的研究單位之一。60年代中期,半導體材料的性能達到了國際水平,60年代末至80年代初是我國半導體致冷器技術(shù)發(fā)展的一個(gè)臺階。在此期間,一方面研究半導體致冷材料的高優(yōu)值系數,另一方面拓寬其應用領(lǐng)域。中國科學(xué)院半導體研究所投入了大量的人力與物力,獲得了半導體致冷器。因而才有了現在的半導體致冷器的生產(chǎn)及其二次產(chǎn)品的開(kāi)發(fā)和應用。半導體致冷器件結構示意圖:
致冷現象概述
在科技領(lǐng)域中存在著(zhù)多種致冷方法,吸收式、機械壓縮式和半導體致冷,電子致冷的現象是溫差電效應:
1、塞貝克效應(SEEBECKEFFECT)
1821年,德國入賽貝克發(fā)現了當兩種不同的導體相連接時(shí),如兩個(gè)連接點(diǎn)保持不同的溫度,則在導體中產(chǎn)一個(gè)溫差電動(dòng)勢:
V=a△T
式中:V為溫差電動(dòng)勢
a為溫差電動(dòng)勢率(賽貝克系數)
△T為接點(diǎn)之間的溫差
2、帕爾帖效應(PELTIEREFFECT)
1934年法國人帕爾帖發(fā)現了與塞貝克效應的逆效應即當電流流經(jīng)兩面個(gè)不同導體形成的接點(diǎn)處會(huì )產(chǎn)生放熱和吸熱現象。放熱或吸熱由電流的大小來(lái)決定。
Q=aTI
式中:Q為放熱或吸熱功率
a為熳差電動(dòng)勢率
T為冷接點(diǎn)溫度
I為工作電流
3、湯姆遜效應(THOMSONEFFECT)
當電流通過(guò)存有溫度梯度的導體時(shí),導體要放出或吸收熱量。
Qτ=τI△T
式中:Q為放熱或吸熱功率。
τ為湯姆遜系數
I為工作電流
△T為溫度梯度
原理簡(jiǎn)述
1、半導體致冷的原理:把一個(gè)N型和P型半導體的粒子用金屬連接片焊接而成一個(gè)電偶對。當直流電流從N極流向P極時(shí),2.3端上產(chǎn)生吸熱現象,此端稱(chēng)冷端而下面1.4端產(chǎn)生放熱現象,此端稱(chēng)熱端如果電流方向反過(guò)來(lái),則冷熱端相互轉換。由于一個(gè)電偶產(chǎn)生熱效應較?。ㄒ话慵sIKcal/h)所以實(shí)際上將幾十。上百對電偶聯(lián)成的熱電堆。所以半導體的致冷即一端吸熱一端放熱,是由載流子(電子和空穴)流過(guò)結點(diǎn),由勢能的變化而引起的能量傳遞,這是半導體致冷的本質(zhì)。
2、半導體致冷的過(guò)程:電子由負極出發(fā)經(jīng)過(guò)金屬片流向P點(diǎn)4,到P型,再流向P點(diǎn)3,結點(diǎn)金屬片從結點(diǎn)2,到達N型,再返過(guò)結點(diǎn)1,到達金屬片回到電源正極。由于左半部是P型,導電方式是空穴,空穴流動(dòng)方向與電子流動(dòng)方向相反,所以空穴是結點(diǎn)3金屬片,到P型,再到結點(diǎn)4金屬片,最后到電源負極。結點(diǎn)4金屬中的空穴具有的能量低于P型中空穴能量,當空穴在電場(chǎng)作用下要從3到達P型,必須要增加能量,并把這部分勢能轉蠻為空穴的墊能。因而在結點(diǎn)3處的1金屬被冷卻下來(lái),當空穴流向4時(shí),金屬片曲于P型中空穴能量太子金屬中空穴的能量,因而要釋放多余的勢能,要將熱放出來(lái)這4處的金屬片是被加熱。右半部是N型,與金屬片聯(lián)接是靠自由電子導電的,而在結點(diǎn)2金屬中勢能低于N型電子勢能,當自由電子在電場(chǎng)作用1電子通過(guò)結點(diǎn)2到達N型時(shí)必然要增加墊能,這部分勢能只能從金屬片勢能取得,同時(shí)必然使結點(diǎn)2金屬片冷下來(lái)。當電子由N型流向結點(diǎn)1金屬片時(shí),由于電子從勢能較高的地方流向勢能低處,故要釋放多余的墊能。并變成熱能,在結點(diǎn)1處使金屬片加熱,是熱端。
3、半導體致冷器件的性能:在應用致冷器前,要進(jìn)一步的了解它的性能,實(shí)際上致冷器的冷端從周?chē)盏臒酫л外,還有兩個(gè),一個(gè)是焦耳熱Qj,另一個(gè)是傳導熱Qk。電流從元件內部通過(guò)就產(chǎn)生焦耳熱,焦耳熱的一半傳到冷端另一半傳到熱端,傳導熱從熱端傳到冷端。
產(chǎn)冷量Qc=Qπ-Qj-Qk=(2p-2n).Tc.I-1/2j2R-K(Th-Tc)
?。ㄊ街?,R表示一對電偶的總電阻,K是總熱導。)
熱端散掉的熱Qh=Qπ+Qj-Qk=(2p-2n).Th.I+1/2I2R-K(Th-Tc)
從上面兩公式中可以看出,輸入的電功率恰好就是熱端散掉的熱與冷端吸收的熱之差,這就是“熱泵”的一種:Qh-Qc=I2R=P由上式得出一個(gè)電偶在熱端放出的熱量Qh等于輸入電功率與冷端產(chǎn)冷量之和,相反得出冷端產(chǎn)冷量Qc等于熱端放出的熱量與輸入電功率之差。Qh=P+QcQc=Qh-P應用半導體致冷器作為特種冷源,在技術(shù)應用上具有以下的優(yōu)點(diǎn)和特點(diǎn):
1、不需要任何致冷劑,可連續工作,沒(méi)有污染源沒(méi)有旋轉部件,不會(huì )產(chǎn)生回轉效應,沒(méi)有滑動(dòng)部件是一種固體器件,工作時(shí)沒(méi)有震動(dòng)、噪音、壽命長(cháng),安裝容易。
2、半導體致冷器具有兩種功能,既能致冷,又能加熱,致冷效率一般不高,但致熱效率很高,永遠大于1。因此使用一個(gè)器件就可以代替分立的加熱系統和致冷系統。
3、半導體致冷器是電流換能型器件,通過(guò)輸入電流的控制,可實(shí)現高精度的溫度控制,再加上溫度檢測和控制手段,很易實(shí)現遙控、程控、計算機控制,便于組成自動(dòng)控制系統。
4、半導體致冷器熱慣性非常小,致冷致熱時(shí)間很快,在熱端散熱良好冷端空載的情況下,通電不到一分鐘,致冷器就能達到最大溫差。
5、半導體致冷器的反向使用就是溫差發(fā)電,半導體致冷器一般適用于中低溫區發(fā)電。
6、半導體致冷器的單個(gè)致冷元件對的功率很小,但組合成電堆,用同類(lèi)型的電堆串、并聯(lián)的方法組合成致冷系統的話(huà),功率就可以做的很大,因此致冷功率可以做到幾毫瓦到上萬(wàn)瓦的范圍。
7、半導體致冷器的溫差范圍,從正溫90℃到負溫度130℃都可以實(shí)現。
通過(guò)以上分析,半導體溫差電器件應用范圍有:致冷、加熱、發(fā)電,致冷和加熱應用比較普遍,有以下幾個(gè)方面:(1)軍事方面:導彈、雷達、潛艇等方面的紅外線(xiàn)探測、導行系統。
(2)醫療方面:冷刀、冷臺、白內障摘除器、血液分析儀等。
(3)實(shí)驗室裝置方面:冷阱、冷箱、冷槽、電子低溫測試裝置、各種高低溫實(shí)驗儀器。
(4)專(zhuān)用裝置方面:石油產(chǎn)品低溫測試儀、生化產(chǎn)品低溫測試儀、細菌培養箱、恒溫顯影槽、電腦散熱器等。
(5)日常生活方面:空調、冷熱兩用箱、飲水機、除濕機等。
此外,還有其它方面的應用,這里就不一一提了。
咨詢(xún)熱線(xiàn)
133-6050-3273400電話(huà)
微信客服